Introduction and Optimization

Statistical Learning Theory + Optimization

- Generalization proofs typically state that all feasible estimators generalize well.
- This includes low-accuracy estimators we do not care about.
- Proofs often make stringent assumptions on the data distribution.

- We combine Optimization and Statistical Learning Theory to prove that optimal estimators generalize well.
- We justify common assumptions made in the Multiple Kernel Learning literature.

Multiple Kernel Learning

- Given as kernels k_1, \ldots, k_m, and dataset $(x_1, y_1), \ldots, (x_n, y_n)$.
- An estimator picks $\alpha_1, \ldots, \alpha_m$ and α.
- Define combined kernel $k_t(x) = \sum_{i=1}^m \theta_t k_i(x)$.
- Predict with $y(x; K, \alpha) = \sum_{i=1}^m \alpha_i k_i(x, x_i)$.

Our Approach

- Binary Classification: $y_t \in \{-1, +1\}$.
- α is optimal in a Support Vector Machine.
- Control generalization error of k_t with the error of k_1, \ldots, k_m.

Optimization-Based Results

Lemma of One Kernel

Let α be the dual optimal vector for labeled kernel matrix K. Then, by combining the Stationarity, Complementary Slackness, and Dual Feasibility KKT conditions, we find that

$$\alpha = -\alpha^T K \alpha$$

Theorem of Two Kernels: Adding Kernels Reduces Complexity

Let α_1 and α_2 be the dual-optimal vectors for labeled kernel matrices K_1 and K_2. Let $\alpha_{1,2}$ be the dual-optimal vector for labeled kernel matrix $K_{1,2} = K_1 + K_2$. Then, following from the prior lemma, the optimality of $\alpha_{1,2}$ and some algebra, we have

$$\alpha_{1,2}^T K_{1,2} \alpha_{1,2} \leq \frac{1}{4} \alpha_1^T K_1 \alpha_1 + \alpha_2^T K_2 \alpha_2$$

Theorem of Many Kernels: Adding Many Kernels Greatly Reduces Complexity

Let $\alpha_1, \ldots, \alpha_m$ be the dual-optimal vectors for labeled kernel matrices K_1, \ldots, K_m. Let α_e be the dual optimal vector for labeled kernel matrix $K_e = \sum_{i=1}^m K_i$. Then, by repeatedly applying the prior lemma, we find

$$\alpha_e^T K_e \alpha_e \leq m^{-0.5} B^2$$

Furthermore, if we assume that $\alpha_e^T K_e \alpha_e \leq B^2$, then

$$\alpha_e^T K_e \alpha_e \leq m^{-1} \ln(2)$$

Main Template and Context

Template of Prior Works

Given:

$K_1, K_2, \ldots, K_m, \alpha_e$

Optimize:

$\alpha_1, \alpha_2, \ldots, \alpha_m, \alpha_e$

Assume:

For all $t = 1, 2, \ldots, m$, Assume $\alpha_e^T K_e \alpha_e \leq B^2$

KKT Conditions

Then $\alpha_e^T K_e \alpha_e \leq 3m^{-0.5} B^2$

Rademacher Complexity

Then estimator $y(x; K_e, \alpha_e)$ generalizes well.

Learning Theory Results

Support Vector Machines Styles

- We consider the standard SVM and a L_2-penalized SVM for nonseparable data:

$$\min \frac{1}{n} \sum_{i=1}^n \max \{0, 1 - y_i w^T x_i\}$$

Ways to Combine Kernels Together

- Our core theorem complements existing Rademacher Complexity proofs.
- Generalization error is bounded by the Rademacher Complexity $R(F)$:

$$R(F) = \hat{R} = \hat{R}(F) = \frac{\hat{R}(F)}{\sqrt{m}}$$

Different proofs consider different ways to combine kernels:

1. **Kernel Sums:** If all $\theta_t = 1$,

$$R(F) = O\left(\frac{B B_0 \ln m}{\sqrt{m}}\right)$$

2. **Kernel Subsets:** If all $\theta_t \in \{0, 1\}$,

$$R(F) = O\left(\frac{B B_0 \ln m}{\sqrt{m}}\right)$$

3. **Convex Combinations:** If we have $\theta_t \in \{0, 1\}$ and $\sum_{i=1}^m \theta_i = 1$, then

$$R(F) = O\left(\frac{B B_0 \ln m}{\sqrt{m}}\right)$$

Table of Constants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>i</td>
<td>Index of a Sample</td>
</tr>
<tr>
<td>m</td>
<td>Number of Kernels</td>
</tr>
<tr>
<td>K</td>
<td>Kernel Matrix</td>
</tr>
<tr>
<td>α</td>
<td>Dual Solution Vector for SVM with K</td>
</tr>
<tr>
<td>R^*</td>
<td>Upper bound for all K_{ij}</td>
</tr>
<tr>
<td>R^a</td>
<td>Upper bound for all $k_i(x, x_j) =</td>
</tr>
</tbody>
</table>